18 research outputs found

    Inhibitory activity of benzo[h]quinoline and benzo[h]chromene in human glioblastoma cells

    Get PDF
    Purpose: To carry out a neat synthesis of 2-amino-5,6-dihydro-8-methoxy-4-phenylbenzo[h]quinoline-3- carbonitrile (compound 2) and 2-amino-5,6-dihydro-8-methoxy-4-phenyl-4H-benzo[h]chromene-3- carbonitrile (compound 3) and evaluate their cytotoxic activity in human glioblastoma cells.Methods: Benzo[h]quinoline and benzo[h]chromene were synthesized by treating 6-methoxy-1- tetralone with benzylidenemalononitrile under microwave irradiation. The structures of compounds 2 and 3 were confirmed by elemental, spectral, and x-ray crystallographic analyses. The cytotoxic activity of compounds 2 and 3 was evaluated using WST-1 assay in U373 human glioblastoma cell line.Results: The molecular structures of compounds 2 and 3 were demonstrated unambiguously from single crystal x-ray measurements and they crystallized in triclinic form, P-1, for both compounds. In vitro cytotoxic activity data for compound 2 in human glioblastoma cell line (U373) indicate that no significant cytotoxicity was observed. On the other hand, compound 3 showed highly significant cytotoxic effects on U373 cells at concentrations starting from 0.1 μg/ mL.Conclusion: Compound 3 produces a decrease in cell viability with approximately 80 % cell death while compound 2 did not indicate significant cytotoxic activity. This suggests that the chromene moiety of compound 3 may be responsible for its high cytotoxicity.Keywords: Hydronaphthaline, Benzo[h]quinolone, Benzo[h]chromene, X-ray crystallography, U373 human glioblastoma, Cytotoxicity, Chromene moiet

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Origanum majorana L. protects against neuroinflammation-mediated cognitive impairment: a phyto-pharmacological study

    No full text
    Abstract Background Neuroinflammation and oxidative stress are critical players in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer’s disease (AD) which is responsible for most cases of dementia in the elderly. With the lack of curative treatments, natural phenolics are potential candidates to delay the onset and progression of such age-related disorders due to their potent antioxidant and anti-inflammatory effects. This study aims at assessing the phytochemical characteristics of Origanum majorana L. (OM) hydroalcohol extract and its neuroprotective activities in a murine neuroinflammatory model. Methods OM phytochemical analysis was done by HPLC/PDA/ESI-MSn. Oxidative stress was induced in vitro by hydrogen peroxide and cell viability was measured using WST-1 assay. Swiss albino mice were injected intraperitoneally with OM extract at a dose of 100 mg/kg for 12 days and with 250 μg/kg LPS daily starting from day 6 to induce neuroinflammation. Cognitive functions were assessed by novel object recognition and Y-maze behavioral tests. Hematoxylin and eosin staining was used to assess the degree of neurodegeneration in the brain. Reactive astrogliosis and inflammation were assessed by immunohistochemistry using GFAP and COX-2 antibodies, respectively. Results OM is rich in phenolics, with rosmarinic acid and its derivatives being major constituents. OM extract and rosmarinic acid significantly protected microglial cells against oxidative stress-induced cell death (p < 0.001). OM protected against the LPS-induced alteration of recognition and spatial memory in mice (p < 0.001) and (p < 0.05), respectively. Mice that received OM extract prior to the induction of neuroinflammation showed comparable histology to control brains, with no overt neurodegeneration. Furthermore, OM pre-treatment decreased the immunohistochemistry profiler score of GFAP from positive to low positive and COX-2 from low positive to negative in the brain tissue, compared to the LPS group. Conclusion These findings highlight the potential preventive effects of OM phenolics against neuroinflammation and pave the way toward drug discovery and development for neurodegenerative disorders

    Possible Synergistic Antidiabetic Effects of Quantified Artemisia judaica Extract and Glyburide in Streptozotocin-Induced Diabetic Rats via Restoration of PPAR-α mRNA Expression

    No full text
    Several members of the genus Artemisia are used in both Western and African traditional medicine for the control of diabetes. A considerable number of diabetic patients switch to using oral antidiabetic drugs in combination with certain herbs instead of using oral antidiabetic drugs alone. This study examined the effect of Artemisia judaica extract (AJE) on the antidiabetic activity of glyburide (GLB) in streptozotocin (STZ)-induced diabetes. Forty-two male Wistar rats were divided into seven equal groups. Normal rats of the first group were treated with the vehicle. The diabetic rats in the second–fifth groups received vehicle, GLB (5 mg/kg), AJE low dose (250 mg/kg), and AJE high dose (500 mg/kg), respectively. Groups sixth–seventh were treated with combinations of GLB plus the lower dose of AJE and GLB plus the higher dose of AJE, respectively. All administrations were done orally for eight weeks. Fasting blood glucose (FBG) and insulin levels, glycated hemoglobin (HbA1c) percentage, serum lipid profile, and biomarkers of oxidative stress were estimated. The histopathological examination of the pancreas and the immunohistochemical analysis of anti-insulin, anti-glucagon, and anti-somatostatin protein expressions were also performed. The analysis of the hepatic mRNA expression of PPAR-α and Nrf2 genes were performed using quantitative RT-PCR. All treatments significantly lowered FBG levels when compared with the STZ-control group with the highest percentage reduction exhibited by the GLB plus AJE high dose combination. This combination highly improved insulin levels, HbA1c, and lipid profile in blood of diabetic rats compared to GLB monotherapy. In addition, all medicaments restored insulin content in the β-cells and diminished the levels of glucagon and somatostatin of the α- and δ-endocrine cells in the pancreatic islets. Furthermore, the GLB plus AJE high dose combination was the most successful in restoring PPAR-α and Nrf2 mRNA expression in the liver. In conclusion, these data indicate that the GLB plus AJE high dose combination gives greater glycemic improvement in male Wistar rats than GLB monotherapy

    Momordica charantia Extract Protects against Diabetes-Related Spermatogenic Dysfunction in Male Rats: Molecular and Biochemical Study

    No full text
    More than 90% of diabetic patients suffer from sexual dysfunction, including diminished sperm count, sperm motility, and sperm viability, and low testosterone levels. The effects of Momordica charantia (MC) were studied by estimating the blood levels of insulin, glucose, glycosylated hemoglobin (HbA1c), testosterone (TST), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in diabetic rats treated with 250 and 500 mg/kg b.w. of the total extract. Testicular antioxidants, epididymal sperm characteristics, testicular histopathology, and lesion scoring were also investigated. Testicular mRNA expression of apoptosis-related markers such as antiapoptotic B-cell lymphoma-2 (Bcl-2) and proapoptotic Bcl-2-associated X protein (Bax) were evaluated by real-time PCR. Furthermore, caspase-3 protein expression was evaluated by immunohistochemistry. MC administration resulted in a significant reduction in blood glucose and HbA1c and marked elevation of serum levels of insulin, TST, and gonadotropins in diabetic rats. It induced a significant recovery of testicular antioxidant enzymes, improved histopathological changes of the testes, and decreased spermatogenic and Sertoli cell apoptosis. MC effectively inhibited testicular apoptosis, as evidenced by upregulation of Bcl-2 and downregulation of Bax and caspase-3. Moreover, reduction in apoptotic potential in MC-treated groups was confirmed by reduction in the Bax/Bcl-2 mRNA expression ratio

    Experimental Validation of Second-Order Adaptive Fuzzy Logic Controller for Grid-Connected DFIG Wind Power Plant

    No full text
    This paper introduces a second-order adaptive fuzzy logic controller (SO-AFLC) to enhance the characteristics of a doubly fed induction generator (DFIG) inside a grid-tied wind power plant (WPP). SO-AFLCs were utilized to maximize the output of the DFIG wind power plant (WPP) and improve dynamic responsiveness with extremely low mean square error. When comparing the mean square error of SO-AFLC with proportional-integral controllers (PI) and adaptive fuzzy logic controllers (AFLC), the reductions are 87.38&#x0025; and 40.39&#x0025;, respectively. This controller prevents overshoots and oscillations. DFIG wind power plant is modeled and simulated using Matlab/Simulink package. Under the unit step wind speed profile, SO-AFLC improved the steady-state error in the Cp waveform by 63.25&#x0025; compared with the PI controller and 13.12&#x0025; compared with AFLC. DSpace1104 is used to conduct an experimental investigation to validate the simulation results. In addition, realistic data from the wind farm at RAS Ghareb in the Gulf of Suez, Egypt, are used in this study to achieve more realistic results. Compared to those obtained with PI and AFLC, the results obtained using SO-AFLCs showed fast time response, high convergence rate, reduced peak overshoot, less undershoot, and low steady-state error in terms of power coefficient of the turbine, DC link voltage control, and rotor speed tracking. In addition, a wind turbine performance index based on gross system integral absolute error (IAE) is provided. This index is used to illustrate the SO-AFLC methodology&#x2019;s viability compared to AFLC and PI under the same wind turbine conditions

    Protective Effect of <i>Beta</i>-Carotene against Myeloperoxidase- Mediated Oxidative Stress and Inflammation in Rat Ischemic Brain Injury

    No full text
    Oxidative stress and inflammatory reaction play critical roles in ischemia/reperfusion (I/R) injury in the brain. β-carotene (βCAR) is a naturally occurring pigment present in fruits and vegetables that expresses antioxidant and anti-inflammatory activities. This study was conducted to investigate the involvement of Bcl2/Bax and NF-κB signaling pathways in the potential protective role of βCAR against brain injury in a middle cerebral artery occlusion (MCAO) rat model. A focal brain ischemia model was created for 2 h, followed by reperfusion. Rats were given 10 and 20 mg/kg of βCAR for 7 days orally before induction of ischemia, at the start of reperfusion, and 3 days after ischemia. Scores of neurological deficit were rated 24 h after induction of ischemia. Motor coordination and spontaneous coordinate activities were assessed using rotarod and activity cage, respectively. After 2 h of the last dose, the animals were killed and their brains were extracted for further examinations. The results of the study show that βCAR diminished the score of neurological deficits and ameliorated motor coordination, balance, and locomotor activity in the I/R control group. Further, βCAR resulted in diminution of malondialdehyde (MDA) and augmentation of reduced glutathione (GSH) contents, as well as the elevation of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) enzyme activities in the brain homogenates of I/R rats. βCAR treatment significantly reduced nuclear factor kappa B (NF-κB) brain content and myeloperoxidase (MPO) activity and ameliorated the histological alterations in the brain tissues. βCAR significantly suppressed Bcl-2-associated X protein (Bax) and caspase-3 expression, as well as upregulated B-cell lymphoma-2 (Bcl-2) expression, suggesting a neuroprotective potential via downregulating NF-kB and protecting the rat brain against the I/R-associated apoptotic injury
    corecore